Статистика решение задач товаров

статистика решение задач товаров 1 1 1 1 1 1 1 1 1 1 Рейтинг 4.16 (22 Голоса)

 

Задача Статистическая сводка и группировка.

Теория по решению задачи.

Статистическая сводка – научно обработанный материал статистического наблюдения в целях получения обобщенной характеристики изучаемого явления.

Группировка – распределение единиц изучаемого объекта на однородные типичные группы по существенным для них признакам.

Интервал – разница между максимальным и минимальным значением признака в каждой группе.

товаров src="http://zadachi-ru.com.ua/images/image001_11.png" alt="величина интервала">, где

i – величина интервала;

R – размах колебания (R=xmax-xmin)

n – принятое число групп;

xmax, xmin – наибольшее и наименьшее значение признака в изучаемой совокупности.

, где

N – число наблюдений

Типовая задача № 1

Распределите потребительские общества по размеру товарооборота на 3 группы с равными интервалами. В каждой группе подсчитайте количество потребительских обществ, сумму товарооборота, сумму издержек обращения. Результаты группировок представьте в табличной форме. К какому виду статистических таблиц относится составление вами таблица, и какой вид группировки она содержит?

Имеются основные экономические показатели потребительских обществ за отчетный период:

Таблица № 1

№ п/п

Товарооборот в млн. грн.

Издержки обращения, в млн. грн.

Прибыль, в млн. грн.

1

390

14

40

2

190

8

15

3

180

8

15

4

450

16

42

5

200

10

20

6

390

14

40

7

180

10

13

8

250

11

25

9

330

12

25

10

240

8

21

11

300

11

24

12

230

10

15

13

420

12

36

14

190

14

12

15

450

15

42

16

200

8

23

Итого

4590

181

408

Ход решения задачи:

Т. к. нам известен группировочный признак, работу необходимо начать в определения величины интервала по формуле:

Образец 3 группы потребительских обществ по размеру товарооборота.

Определяем границы групп:

1 группа: 180+90=270 (180-270)

2 группа: 270+90=360 (270-360)

3 группа: 360+90+450 (360-450)

После того, как выбран группировочный признак, намечено число групп и образованы сами группы, необходимо отобрать показатели, которыми будут характеризоваться группы, и определить их величину по каждой группе.

В нашем примере каждую группу необходимо охарактеризовать следующими показателями:

а) количеством потребительских обществ;

б) суммой товарооборота;

в) суммой издержек обращения.

Для заполнения итоговой таблицы составим предварительно рабочие таблицы № 2, 3, 4.

Группа потребительских обществ с товарооборотом от 180 до 270 млн. грн.

Таблица № 2

№ п/п

Номер потребительского общества

Товарооборот, в млн. грн.

Сумма издержек обращения, в млн. грн.

1

2

190

8

2

3

180

8

3

5

200

10

4

7

180

10

5

8

250

11

6

10

240

8

7

12

230

10

8

14

190

14

9

16

200

8

Итого

9

1860

87

Группа потребительских обществ с товарооборотом от 270 до 3660 млн. грн.

Таблица № 3

№ п/п

Номер потребительского общества

Товарооборот, в млн. грн.

Сумма издержек обращения, в млн. грн.

1

9

330

12

2

11

300

11

Итого

2

630

23

Группа потребительских обществ с товарооборотом от 360 до 450 млн. грн.

Таблица № 4

№ п/п

Номер потребительского общества

Товарооборот, в млн. грн.

Сумма издержек обращения, в млн. грн.

1

1

390

14

2

4

450

16

3

6

390

14

4

13

420

12

5

15

450

15

Итого

5

2100

71

Итоговые показатели рабочих таблиц занесем в окончательную итоговую таблицу и получим групповую таблицу № 5.

Группировка потребительских обществ, по размеру товарооборота:

Таблица № 5

Группы потребительских обществ по размеру товарооборота, млн. грн.

Количество потребительских обществ

Товарооборот, в млн. грн.

Сумма издержек обращения, в млн. грн.

180-270

9

1860

87

270-360

2

630

23

360-450

16

4590

181

Вывод: По результатам итоговой таблицы можно сделать вывод, что с увеличением объема товарооборота потребительских обществ, относительный показатель уровня издержек обращения снижается. Следовательно, между ними существует обратная связь. Составленная нами таблица является групповой таблицей, т. к. ее подлежащее содержит группы потребительских обществ по размеру товарооборота. Она содержит аналитический вид группировки.

 

Задача - Ряды распределения и статистические таблицы.

Теория по решению задачи.

Статистический ряд распределения – упорядоченное распределение единиц совокупности на группы по определенному варьирующему признаку.

Дискретный вариационный ряд – характеризует распределение единиц совокупности по дискретному (прерывному) признаку.

Интервальный вариационный ряд – характеризует распределение единиц совокупности по интервальному (непрерывному) признаку.

Для изображения дискретных вариационных рядов распределения используется «полигон распределения». Для графического изображения интервального вариационного ряда применяются «гистограмма» и «кумулята».

Задача 1.

На экзамене по истории студенты получили оценки:

3 4 4 4 3 4

3 4 3 5 4 4

5 5 2 3 2 3

3 4 4 5 3 3

5 4 5 4 4 4

Построить дискретный вариационный ряд распределения студентов по баллам и изобразить его графически.

Ход решения задачи:

Определяем элементы ряда распределения: варианты, частоты, частоты.

Оценка, баллы

Кол-во студентов с такой оценкой, человек

В процентах к итогу

2

2

6,7

3

9

30

4

13

43,3

5

6

20

Итого

30

100

Теперь графически изобразим дискретный ряд распределения в виде помпона распределения.

 

Можно сделать вывод о том, что преобладающее большинство студентов получило «4» (43,3 %).

Задача 2.

Во время выборочной проверки было установлено, что продолжительность одной покупки в кондитерском отделе магазина была такой: (секунды).

77 70 82 81 81

82 75 80 71 80

81 89 75 67 78

73 76 78 73 76

82 69 61 66 84

72 74 82 82 76

Построить интервальный вариационный ряд распределения покупок по продолжительности, создав 4 группы с одинаковыми интервалами. Обозначить элементы ряда. Изобразить его графически, сделать вывод.

Ход решения задачи по статистике:

Определяем элементы ряда распределения: варианты, частоты, частости, накопленные частоты.

Но прежде рассчитаем границы 4 заданных групп с одинаковыми интервалами:

Величину интервала определим по формуле .

В нашем случае

Границы групп соответственно равны:

I 61+7=68 (61-68)

II 68+7=75 (68-75)

III 75+7=82 (75-82)

IV 82+7=89 (82-89)

Группы покупок по продолжительности, сек.

Число покупок

В процентах к итогу

Накопленные частоты

61-68

3

10

3

68-75

9

30

12

75-82

16

53,3

28

82-89

2

6,7

30

Итого

30

100

 

Теперь графически отобразим наш интервальный вариационный ряд в виде гистограммы и кумуляты.

 

По таблице и графика можно сделать вывод о том, что преобладающее большинство покупок (16 или 53.3%) находится во временном интервале 75-82, сек.

 

Статистика задача - Абсолютные и относительные величины.

Теория по решению статистической задачи.

Абсолютные величины – показатели, которые выражают размеры общественных явлений и процессов числом единиц совокупности.

Относительные величины – показатели, выражающие количественные соотношения численностей или величин признаков изучаемых явлений.

Виды относительных величин:

1)  Относительная величина выполнения плана:

Относительная величина выполнения плана

2)  Относительная величина планового задания:

Относительная величина планового задания

3)  Относительная величина динамики:

Относительная величина динамики

4)  Относительная величина структуры:

Относительная величина структуры

5)  Относительная величина сравнения отражает соотношение двух объемов или уровней в пространстве: соотношение производства автомобилей в Украине и России, соотношение уровней оплаты труда в разных хозяйствах, соотношение уровней производительности на разных предприятиях отрасли и т. д.

6)  Относительная величина координации получается посредством деления друг на друга разноименных исходных показателей, она дает типичную характеристику соотношения одно-порядковых по значимости исходных показателей, во-первых, непосредственно связанных между собой, во-вторых, обладающих некоторой общностью.

7)  Относительная величина интенсивности:

Относительная величина интенсивности

Типовая задача № 1

Два консервных завода выработали по 100 тыс. шт. банок виноградного сока. На первом заводе емкость каждой банки составляет 500 см3, а на втором – 200 см3. Можно ли сказать, что оба завода работали одинаково?

Ход решения задачи по статистике:

Для того, чтобы ответить на этот вопрос необходимо установить коэффициенты перевода фактического объема банок в условные банки и затем умножить количество выпущенных банок на эти коэффициенты. Представим расчет в таблице № 1.

Таблица № 1

Заводы

Количество выпущенных банок, тыс. шт.

Объем банки см3

Коэффициенты перевода

Количество выпущенных условных банок, тыс. шт.

№ 1

100

500

1001,414=141,4

№ 2

100

200

1000,566=56,6

Таким образом, завод № 1 по сравнению с заводом № 2 выпустил виноградного сока на 84,8 тыс. Банок больше (141,4-56,6).

Статистика - Типовая задача № 2

Имеются следующие данные розничного товарооборота:

Таблица № 2

Универмаги

Розничный товарооборот (млн. грн.)

Фактически за базисный год

Отчетный год

По плану

Фактически

«Крым»

105

110

98

«Центральный»

137

148

150

Определить:

1.  Относительную величину выполнения плана.

2.  Относительную величину планового задания.

3.  Относительную величину динамики.

Ход решения задачи:

1.  Определяем относительную величину выполнения плана по двум универмагам:

2.  Определим относительную величину планового задания:

3.  Определяем относительную величину динамики:

 

Статистическая задача - Средние и структурные средние величины.

Теория по решению статистической задачи:

Средние величины – это показатели. Выражающие типичные черты и дают обобщающую количественную характеристику уровня признака по совокупности однородных явлений.

1.  Средняя арифметическая:

Средняя арифметическая

2.  Средняя гармоническая:

Средняя гармоническая

3.  Средняя квадратическая:

Средняя квадратическая

4.  Средняя хронологическая:

Средняя хронологическая

5.  Средняя геометрическая:

Средняя геометрическая

К1, К2, К3 и Кn – коэффициенты динамики по отношению к предыдущему периоду.

6.  мода интервальных рядов распределения вычисляется по следующей формуле:

х0 – минимальная граница модального интервала;

i – величина интервала;

f2 – частота модального интервала;

f1 – частота интервала, предшествующего модальному;

f3 – частота интервала, следующего за модальным.

Мода для дискретных рядов распределения – это наиболее часто встречающаяся величина признака в данной совокупности.

7.  Медиана для интервальных рядов распределения вычисляется по формуле:

Медиана для интервальных рядов

x0 – нижняя граница медианного интервала;

i – величина медианного интервала;

∑f – сумма частот ряда;

SМЕ-1 – сумма накопленных частот, предшествующих медианному интервалу;

fМЕ – частота медианного интервала.

Чтобы определить медиану в дискретном вариационном ряду. Необходимо сумму частот разделить пополам и к полученному результату добавить ½.

Типовая задача № 1

Имеются следующие данные о заработной плате рабочих:

Таблица № 1

Месячная заработная плата (грн.) (х)

Число рабочих (f)

хf

х1=120

27

3240

х2=145

33

4785

х4=200

48

9600

х5=208

51

10608

х6=250

16

4000

х7=337

28

9436

Итого

203

41669

Определите среднюю заработную плату одного рабочего.

Ход решения:

Среднюю заработную плату определим по формуле средней арифметической взвешенной:

Т. о. средняя заработная плата рабочего составила 205,27 грн.

Типовая задача (статистика) № 2

Имеются, следующие данные выпуска литья в литейном цехе завода за пятилетний период:

Таблица № 2

Годы

1-й

2-й

3-й

4-й

5-й

Выпуск литья, тонн

528,34

336,98

439,24

297,55

672,17

В % к предыдущему году

-

63,8

130,3

67,7

225,9

Требуется определить средний темп выпуска литья.

Ход решения задачи:

Для определения среднего темпа выпуска литья используем формулу средней геометрической:

Типовая задача № 3

Имеются следующие данные:

Таблица № 3

Група рабочих по размеру заработной платы (в грн.)

Число рабочих

SМЕ

150-200

28

28

200-250

54

82

250-300

30

112

300-350

47

159

350-400

63

222

400-450

18

240

450-500

22

262

Итого

262

-

Определить моду и медиану.

Ход решения задачи:

1.  Определяем моду:

2.  Определяем медиану:


Источник: http://zadachi-ru.com.ua/statistika/181-zadachi-po-st



Задача 38. Расчет средней цены - Задачи по статистике - Решение задач Гдз 7 класс для украинских школ

Статистика решение задач товаров Статистика решение задач товаров Статистика решение задач товаров Статистика решение задач товаров Статистика решение задач товаров Статистика решение задач товаров Статистика решение задач товаров Статистика решение задач товаров